95 research outputs found

    Rheological effects in the linear response and spontaneous fluctuations of a sheared granular gas

    Get PDF
    The decay of a small homogeneous perturbation of the temperature of a dilute granular gas in the steady uniform shear flow state is investigated. Using kinetic theory based on the inelastic Boltzmann equation, a closed equation for the decay of the perturbation is derived. The equation involves the generalized shear viscosity of the gas in the time-dependent shear flow state, and therefore it predicts relevant rheological effects beyond the quasi-elastic limit. A good agreement is found when comparing the theory with molecular dynamics simulation results. Moreover, the Onsager postulate on the regression of fluctuations is fulfilled

    Internal energy fluctuations of a granular gas under steady uniform shear flow

    Full text link
    The stochastic properties of the total internal energy of a dilute granular gas in the steady uniform shear flow state are investigated. A recent theory formulated for fluctuations about the homogeneous cooling state is extended by analogy with molecular systems. The theoretical predictions are compared with molecular dynamics simulation results. Good agreement is found in the limit of weak inelasticity, while systematic and relevant discrepancies are observed when the inelasticity increases. The origin of this behavior is discussed

    The Enskog equation for confined elastic hard spheres

    Full text link
    A kinetic equation for a system of elastic hard spheres or disks confined by a hard wall of arbitrary shape is derived. It is a generalization of the modified Enskog equation in which the effects of the confinement are taken into account and it is supposed to be valid up to moderate densities. From the equation, balance equations for the hydrodynamic fields are derived, identifying the collisional transfer contributions to the pressure tensor and heat flux. A Lyapunov functional, H[f]\mathcal{H}[f], is identified. For any solution of the kinetic equation, H\mathcal{H} decays monotonically in time until the system reaches the inhomogeneous equilibrium distribution, that is a Maxwellian distribution with a the density field consistent with equilibrium statistical mechanics

    Homogeneous hydrodynamics of a collisional model of confined granular gases

    Get PDF
    The hydrodynamic equation governing the homogeneous time evolution of the temperature in a model of confined granular gas is studied by means of the Enskog equation. The existence of a normal solution of the kinetic equation is assumed as a condition for hydrodynamics. Dimensional analysis implies a scaling of the distribution function that is used to determine it in the first Sonine approximation, with a coefficient that evolves in time through its dependence on the temperature. The theoretical predictions are compared with numerical results obtained by the direct simulation Monte Carlo method, and a good agreement is found. The relevance of the normal homogeneous distribution function to derive inhomogeneous hydrodynamic equations, for instance using the Champan-Enskog algorithm, is indicated.Comment: Accepted in Phys. Rev.

    Hydrodynamics for a model of a confined quasi-two-dimensional granular gas

    Get PDF
    The hydrodynamic equations for a model of a confined quasi-two-dimensional gas of smooth inelastic hard spheres are derived from the Boltzmann equation for the model, using a generalization of the Chapman-Enskog method. The heat and momentum fluxes are calculated to Navier-Stokes order, and the associated transport coefficients are explicitly determined as functions of the coefficient of normal restitution and the velocity parameter involved in the definition of the model. Also an Euler transport term contributing to the energy transport equation is considered. This term arises from the gradient expansion of the rate of change of the temperature due to the inelasticity of collisions, and vanishes for elastic systems. The hydrodynamic equations are particularized for the relevant case of a system in the homogeneous steady state. The relationship with previous works is analyzed

    Memory effects in the relaxation of a confined granular gas

    Full text link
    The accuracy of a model to describe the horizontal dynamics of a confined quasi-two-dimensional system of inelastic hard spheres is discussed by comparing its predictions for the relaxation of the temperature in an homogenous system with molecular dynamics simulation results for the original system. A reasonably good agreement is found. Next, the model is used to investigate the peculiarities of the nonlinear evolution of the temperature when the parameter controlling the energy injection is instantaneously changed while the system was relaxing. This can be considered as a non-equilibrium generalization of the Kovacs effect. It is shown that, in the low density limit, the effect can be accurately described by using a simple kinetic theory based on the first Sonine approximation for the one-particle distribution function. Some possible experimental implications are indicated

    Mesoscopic Theory of Critical Fluctuations in Isolated Granular Gases

    Get PDF
    Fluctuating hydrodynamics is used to describe the total energy fluctuations of a freely evolving gas of inelastic hard spheres near the threshold of the clustering instability. They are shown to be governed by vorticity fluctuations only, that also lead to a renormalization of the average total energy. The theory predicts a power-law divergent behavior of the scaled second moment of the fluctuations, and a scaling property of their probability distribution, both in agreement with simulations results. A more quantitative comparison between theory and simulation for the critical amplitudes and the form of the scaling function is also carried out

    Towards an HH-theorem for granular gases

    Get PDF
    The HH-theorem, originally derived at the level of Boltzmann non-linear kinetic equation for a dilute gas undergoing elastic collisions, strongly constrains the velocity distribution of the gas to evolve irreversibly towards equilibrium. As such, the theorem could not be generalized to account for dissipative systems: the conservative nature of collisions is an essential ingredient in the standard derivation. For a dissipative gas of grains, we construct here a simple functional H\mathcal H related to the original HH, that can be qualified as a Lyapunov functional. It is positive, and results backed by three independent simulation approaches (a deterministic spectral method, the stochastic Direct Simulation Monte Carlo technique, and Molecular Dynamics) indicate that it is also non-increasing. Both driven and unforced cases are investigated

    Breakdown of hydrodynamics in the inelastic Maxwell model of granular gases

    Get PDF
    Both the right and left eigenfunctions and eigenvalues of the linearized homogeneous Boltzmann equation for inelastic Maxwell molecules corresponding to the hydrodynamic modes are calculated. Also, some non-hydrodynamic modes are identified. It is shown that below a critical value of the parameter characterizing the inelasticity, one of the kinetic modes decays slower than one of the hydrodynamic ones. As a consequence, a closed hydrodynamic description does not exist in that regime. Some implications of this behavior on the formally computed Navier-Stokes transport coefficients are discussed.Comment: Submitted to PRL (13/04/10
    corecore